Powered by RND

StarDate

Billy Henry
StarDate
Latest episode

Available Episodes

5 of 203
  • Radio Interference
    For radio astronomers, there’s some good news and some bad news. On the good side, a pilot project with SpaceX has devised a way to reduce the radio interference produced by satellites. On the bad side, the satellites can produce accidental interference. Radio telescopes tell us things about the universe that we can’t get any other way. But the telescopes are extremely sensitive. Transmissions from an orbiting satellite are like bright headlights – they overpower the subtle signals of astronomical objects. There are more than 15,000 satellites in orbit today – a five-fold increase in just six years. And the total could balloon to a hundred thousand by the next decade. Astronomers worked with SpaceX to reduce interference from its Starlink satellites. The groups combined the observing schedule of a telescope with the Starlink control system. Satellites passing over the telescope were instructed to turn away – aiming the headlights in a different direction. And there are plans to extend the scheme to other telescopes. On the other hand, a recent study found that tiny radio signals emitted by a satellite’s electronics can also be a problem. Scientists looked at 76 million radio images made by a telescope in Australia. They found that Starlink satellites interfered with up to 30 percent of the pictures. So future satellites may need extra shielding to keep them from blinding astronomy’s radio eyes. Script by Damond Benningfield
    --------  
    2:20
  • Moon and Elnath
    Most of the stars are so small and far away that they’re nothing more than pinpoints even in the largest telescopes. That makes it impossible to measure the size of a star. But astronomers can measure the sizes of some stars – not with a giant telescope, but with a collection of smaller ones. The technique is called interferometry. It links up several telescopes. The combo provides an especially sharp view of the heavens. If the telescopes are, say, 300 feet apart, then the combined view is as clear as that of a single telescope 300 feet in diameter. The array’s view isn’t as deep as that of a giant telescope, only as sharp. Interferometers have allowed astronomers to measure the apparent sizes of hundreds of stars. Combining that with a star’s distance provides its true size. One example is Elnath, the second-brightest star of Taurus. It’s about 134 light-years away. It’s five times the mass of the Sun. So even though it’s much younger than the Sun, it’s already passed through the prime phase of life. That’s caused it to puff up – to almost five times the Sun’s diameter. At that size, it shines more than 800 times brighter than the Sun – a big beacon for the bull. Elnath is close to the lower left of the Moon this evening. The Moon will move toward the star during the night. They’ll be closest at dawn. The gap will be smaller for skywatchers on the West Coast, and smallest for those in Alaska and Hawaii. Script by Damond Benningfield
    --------  
    2:20
  • SOHO
    [3, 2, 1, ignition, and liftoff of SOHO and the Atlas vehicle on an international mission of solar physics.] Generally speaking, staring at the Sun non-stop for decades is a bad idea. But a spacecraft launched 30 years ago this week has done just that. It’s told us about the Sun’s interior, its surface, and its extended outer atmosphere. That’s helped scientists develop better forecasts of space weather – interactions between Sun and Earth that can have a big effect on our technology. The craft is called SOHO – Solar and Heliospheric Observatory. It was launched into an orbit around a point in space where the gravity of Earth and the Sun are balanced. From there, its view of the Sun is never blocked. SOHO watches the Sun in many different ways. It keeps a close eye on the Sun’s magnetic field, which produces outbursts of energy and particles that can have an impact on Earth. That’s revealed shockwaves and “tornadoes” rippling across the Sun’s surface. It’s also revealed the source of the solar wind – a steady flow of charged particles that blows through the solar system. Some of SOHO’s observations block out the Sun itself, showing the space around the Sun. That’s allowed SOHO to discover more than 5,000 comets as they passed close to the Sun – many of which didn’t survive. SOHO’s mission is scheduled to end soon – closing this long-working eye on the Sun. Script by Damond Benningfield
    --------  
    2:20
  • New Strategies
    Scientists have been searching for dark matter for decades. They haven’t found it – every experiment they’ve devised has come up empty. But they haven’t given up. Among other ideas, they’re thinking about ways to use moons, planets, and stars as detectors. Dark matter appears to make up about 85 percent of all the matter in the universe. We know it’s there because its gravity pulls on the visible stars and galaxies around it. Dark matter may consist of a type of particle that almost never interacts with normal matter. But it should interact just enough to reveal its nature. Experiments here on Earth haven’t seen any such interactions. So some scientists recommend using astronomical objects instead of lab experiments. Blobs of dark matter might enfold a binary star system. The dark matter’s gravity could pull the two stars away from each other. And dark matter might clump together to make a special kind of star. Both of those might be detectable with current telescopes. Smaller blobs might slam into an icy moon, creating a special kind of crater. Such craters could be visible on Ganymede, the largest moon of Jupiter. Two missions on their way to Jupiter might be able to see them. And dark matter might fall into the center of a planet and hang around. If enough builds up, it could heat the planet’s interior. So by studying many planets in other star systems, we might see some that are unusually warm – heated up by encounters with dark matter. Script by Damond Benningfield
    --------  
    2:20
  • Toasty Future
    Things are heating up for a planet that orbits the brightest star of Aries. The star is expanding to become a giant, so it’s pumping more energy into space. That will make temperatures extremely uncomfortable on the planet. Hamal is at the end of its life. It’s converted the hydrogen in its core to helium. Now, it’s getting ready to fuse the helium to make other elements. That’s made the core hotter. And that’s caused the star’s outer layers to puff up – to more than a dozen times the diameter of the Sun. So Hamal is about 75 times brighter than the Sun. Hamal has one known possible planet. It’s heavier than Jupiter, the giant of our own solar system. On average, the planet is about as far from Hamal as Earth is from the Sun – much closer in than Jupiter is. So every square foot of the planet’s surface receives dozens of times more energy than the same area on Jupiter does. If the planet is a ball of gas like Jupiter, then the extra heat is causing its atmosphere to puff up – and causing a lot of it to stream away into space. Over the next few million years, the planet will get even hotter, because Hamal will get even bigger. The extra energy may erode the planet’s atmosphere completely. On the other hand, the planet may spiral into the star. Either way, things are going to get much hotter for Hamal’s only known planet. Look for Hamal in the east at nightfall, well to the left of the Moon. Script by Damond Benningfield
    --------  
    2:20

More Education podcasts

About StarDate

StarDate, the longest-running national radio science feature in the U.S., tells listeners what to look for in the night sky.
Podcast website

Listen to StarDate, Ready For Love with Hilary Silver and many other podcasts from around the world with the radio.net app

Get the free radio.net app

  • Stations and podcasts to bookmark
  • Stream via Wi-Fi or Bluetooth
  • Supports Carplay & Android Auto
  • Many other app features
Social
v8.0.7 | © 2007-2025 radio.de GmbH
Generated: 12/6/2025 - 5:18:56 PM