The black hole at the heart of the Milky Way is like the monster lurking under your bed. It’s four million times the mass of the Sun, and about 15 million miles across – just waiting to gobble up anything that gets too close.
But compared to the black holes in many other galaxies, the one in the Milky Way is less like a monster and more like a dust bunny. The largest ones yet seen are thousands of times bigger. They’re known as ultra-massive black holes. Informally, they’re also called SLABs – stupendously large black holes.
Just which one is the biggest is uncertain – it’s hard to measure the mass of something that might be billions of light-years away. A recent candidate is in a structure known as the Cosmic Horseshoe. The gravity of a stupendously large galaxy “warps” the view of a galaxy behind it, creating what looks like a big, blue horseshoe.
In a recent study, astronomers combined a couple of techniques to measure the mass of the black hole in the foreground galaxy: 36 billion times the mass of the Sun. Researchers say the combo makes the measurement the most accurate for any candidate for the “biggest black hole” honors.
But other black holes could be bigger. The biggest candidate is known as Phoenix A. It could be up to about 25 thousand times the mass of the Milky Way’s black hole. But that number is highly uncertain. So the search for the biggest black hole continues.
Script by Damond Benningfield
--------
2:20
--------
2:20
Oldest Black Hole
A Little Red Dot might have a big black hole in its heart. And that’s a bit of a challenge to explain.
Little Red Dots are galaxies from the first 1.5 billion years of the universe. The name comes from their appearance – they’re small and red, but they’re especially bright. They don’t appear to have enough stars to make them so bright. So a good bit of their “shininess” could come from giant black holes that are devouring material around them. As they tumble inward, the hot gas, dust, and stars produce enormous amounts of energy.
Even so, the black hole in one Little Red Dot is a bit of a puzzler.
Led by astronomers at the University of Texas at Austin, a team looked at CAPERS-LRD-z9 with Webb Space Telescope. By measuring the speed of material orbiting the center of the galaxy, the team determined that the black hole is up to 300 million times the mass of the Sun.
And that’s where the challenge comes in. The galaxy is so far away that we see it as it looked when the universe was just 500 million years old – three percent of its current age. That makes the black hole the most-distant yet seen. But theories of how such monster black holes form say that half a billion years probably isn’t long enough to make one that big. So theorists have a lot of work to do to explain the giant black hole at the center of a Little Red Dot.
More about black holes tomorrow.
Script by Damond Benningfield
--------
2:20
--------
2:20
Hunter’s Moon
With the autumn harvest safely stowed away, many people in bygone centuries turned their attention to hunting. And just as the Harvest Moon helped them bring in the crops, the Hunter’s Moon helped them find game. The moonlight made it easier to track animals through the empty fields and beyond.
Although most present-day Americans don’t have to worry about storing food for the winter, we still keep the names for those full Moons. We had the Harvest Moon last month. And tonight, it’s time for the Hunter’s Moon.
The names for both of these full Moons come mainly from parts of Europe and the British Isles. The names were recorded as far back as the early 1700s, but they’d probably been in everyday use for much longer. Variations of the “Hunter’s Moon” label were used by several native tribes and nations in the Americas as well.
The Harvest Moon is usually defined as the full Moon closest to the autumn equinox. Most years, that puts it in September. But this year, October’s full Moon edged out September by just a few hours. So the Hunter’s Moon got bumped into November.
Officially, the Moon will be full at 7:19 a.m. Central Standard Time tomorrow. So it will appear almost as “full” when it rises tomorrow night as it does tonight – extra time to appreciate the brilliant glow of the Hunter’s Moon.
Tomorrow: A giant black hole at the center of a little red dot.
Script by Damond Benningfield
--------
2:20
--------
2:20
Terrible Taurids?
In 1908, a space rock the size of a small office building exploded above Siberia, flattening hundreds of square miles of forest. In 1975, several “fireballs” blazed across the night, and instruments on the Moon recorded several impacts. And 30 years later, scientists saw an impact on the Moon.
These events might all be related to the Taurid meteor shower, which is underway now. The shower is created by two objects – a comet and an asteroid. They might be the remnants of a larger body that broke apart thousands of years ago. The debris might include larger rocks ranging from the size of boulders to mountains.
The material is spaced across a long, wide path. Earth flies through this path twice a year. We sweep up some of the debris – mostly small bits of dust and rock.
The amount of material varies from year to year, depending on which part of the stream we pass through. Right now, we’re in a thin region. In 1975, we passed through a denser part, producing more fireballs.
It’s been suggested that when we pass through denser parts of the stream, we might encounter some of the bigger rocks, which could cause major damage if they hit us. Astronomers will be watching during the next crossings through dense regions, in the next decade.
For now, the Taurids are at their best the next few nights. The Moon will wash out almost all the meteors. But a few fireballs might shine through.
Script by Damond Benningfield
--------
2:20
--------
2:20
Taurid Meteors
The Taurid meteor shower has a double identity. It’s split into two different streams, which peak a few nights apart in early November. Neither stream is particularly impressive, but things pick up when they overlap.
Their story begins thousands of years ago, with the breakup of a big ball of ice and dust – Comet Encke. The biggest remaining chunk kept that name. But the breakup created several other big pieces, plus clouds of dust. The whole messy bunch is known as the Encke Complex.
The southern Taurid stream consists of small bits of dust and rock shed by Encke itself. The northern stream is produced by one of its offspring – an asteroid that wasn’t discovered until 2004.
Both streams contain a lot of debris, but it’s spread across tens of millions of miles. So it takes Earth weeks to fly through the streams. That means the twin showers last a long time, but they’re not usually all that noteworthy – at best, they produce no more than a handful of meteors per hour. Things are a little busier when the showers overlap, as they’re doing now.
Unfortunately, the Moon will be full in a couple of days, so it’ll overpower almost all of the Taurids. The streams do produce a few especially bright meteors, but that’s about the best we can expect from the shower with a dual identity.
The Taurid Complex may include some especially big, dangerous chunks of debris, and we’ll talk about that tomorrow.
Script by Damond Benningfield