Powered by RND

StarDate

Billy Henry
StarDate
Latest episode

Available Episodes

5 of 187
  • Uranus Opposition II
    If you suffer from seasonal affective disorder during the dark winter months, then stay away from the poles of Uranus. The giant planet is tilted on its side. So during each 84-year-long orbit around the Sun, the polar regions have 42 years of daylight followed by 42 years of darkness – a looong time to feel sad. Planetary scientists have been watching the slow change of seasons for two decades with Hubble Space Telescope. At visible wavelengths, Uranus looks like an almost-featureless ball – faint bands of clouds are about the only details. A smattering of methane in the atmosphere absorbs red light, giving the planet a pale green color. But Hubble’s instruments split the light into its individual wavelengths. It also can see into the infrared, which isn’t visible to the eye. That reveals more details, providing a better picture of what’s going on. Among other things, it’s revealed that there’s not much methane at the poles, regardless of the season. On the other hand, as the north pole warmed up during spring, it got hazier. At the same time, the haze thinned out over the south pole. Scientists are studying those results to learn more about the planet’s atmosphere and the slow march of its seasons. Uranus is low in the east in early evening, to the lower right of the Pleiades star cluster. Through binoculars, it looks like a star with just a hint of color. More about Uranus tomorrow. Script by Damond Benningfield
    --------  
    2:15
  • Uranus at Opposition
    Uranus is the seventh planet of the solar system, so it’s a long way from both the Sun and Earth. Right now, it’s about 1.7 billion miles away. At that distance, under especially dark skies it’s barely bright enough to see with the eye alone. It’s easy to pick out with binoculars, though. This is an especially good week to look for the planet because it reaches opposition, when it lines up opposite the Sun. It rises around sunset and is in view all night. And it shines brightest for the entire year. In early evening, it’s close to the lower right of another good binocular target, the Pleiades star cluster. Even though Uranus is sometimes visible to the eye alone, it’s so faint that no one realized it was planet for a long time. Every astronomer who saw Uranus logged it as a star, missing out on a chance at immortality. It was officially discovered as a planet by British astronomer William Herschel, in 1781. But even he was fooled by it for a while. When he first saw it, he thought it was a comet. But calculations of its orbit showed that the object was much too far away to be a comet – it had to be a planet, and a big one. Herschel wanted to call it George’s Star after his patron, King George III. Astronomers outside Britain weren’t crazy about that. So almost 70 years later, they finally named it for a Greek god of the sky: Uranus. More about Uranus tomorrow. Script by Damond Benningfield
    --------  
    2:15
  • Moon and Venus
    A barely-there crescent Moon teams up with the disappearing “morning star” in tomorrow’s dawn twilight. But there’s not much time to look for them. The Moon will cross between Earth and the Sun in a couple of days. It’ll be lost in the Sun’s glare. It will return to view, in the evening sky, by Friday or Saturday. Venus is getting ready to disappear in the dawn twilight as well. It will cross behind the Sun on January 6th. It’s a slower passage, so the planet will be hidden in the Sun’s glare for about three months. It’ll emerge as the “evening star” in February. Most cultures figured out that the morning and evening star were actually the same object thousands of years ago. Even so, they had different names for the morning and evening appearances. In ancient Greece, morning Venus was named for the god Phosphorus. In Rome, he was Lucifer. Both names mean “bringer of light” – the god lit the dawn sky with a torch. Venus passes behind the Sun every 584 days – a bit more than 19 months. Before and after it disappears, it’s almost full. So if you look at Venus with a telescope now, it’ll be almost fully lit up – like a negative image of the “fingernail” crescent Moon. Look for Venus and the Moon quite low in the eastern sky beginning about 45 minutes before sunrise. Because of the timing and the viewing angle, they’ll be a little easier to spot from the southeastern corner of the country. Script by Damond Benningfield
    --------  
    2:15
  • Moon and Spica
    If you ever warp over to another star, it would help to know its distance. Say, for example, you wanted to visit Spica, the brightest star of Virgo, which is quite close to the Moon at dawn tomorrow. The system is worth visiting because it consists of two giant stars. They’re so close together that their shapes are distorted, so they look like eggs. The best measurement we have says that Spica is 250 light-years away. But there’s a margin of error of about `four percent. So you could undershoot or overshoot the system by 10 light-years. The distances of most stars are measured with a technique called parallax. Astronomers plot a star’s position at six-month intervals, when Earth is on opposite sides of the Sun. That can produce a tiny shift in the star’s position against the background of more-distant objects. The bigger the shift, the closer the star. But the stars are so far away that the shift is tiny – like the size of a dime seen from miles away – or hundreds of miles. And Earth’s atmosphere blurs the view, so the stars look like fuzzy blobs instead of sharp points. So the most accurate measurements have been made from space. Spica’s distance was measured by Hipparchos, a European space telescope. An even more accurate satellite, Gaia, measured the distances to more than a billion stars – but not Spica. The star was too bright for its detectors – leaving a big margin of error for this impressive system. Script by Damond Benningfield
    --------  
    2:15
  • Leonid Meteors
    The patchiest of all meteor showers will be at its best tomorrow night. Unfortunately, this is one of its off years. At best, it might produce a dozen or so “shooting stars” per hour. Over the past two centuries, though, the Leonids have produced some amazing outbursts. The first of these came in 1833. Skywatchers in parts of America reported rates of a hundred thousand meteors per hour – not a shower, but a storm. The nature of meteor showers was unknown at the time, so many saw the outburst as the end of the world. The Leonids flare to life when Earth crosses the path of Comet Tempel-Tuttle. The comet passes close to the Sun every 33 years or so. It sheds tons of material on each pass – tiny bits of rock and dirt. Each cloud of debris spreads out and forms its own stream. A shower takes place when Earth flies through one of the streams. Newer streams are denser, so they produce more intense displays. Those streams congregate near the comet, so the outbursts occur when the comet is close to the Sun. The last outburst came in the early 2000s. And Earth probably won’t pass through another storm-producing stream until the end of the century – leaving us with meager displays of the Leonids. To see this year’s display, find a safe viewing site away from city lights. The meteors can appear anywhere in the sky, so you don’t need to look in a particular direction to see them. The best view comes between midnight and dawn. Script by Damond Benningfield
    --------  
    2:15

More Education podcasts

About StarDate

StarDate, the longest-running national radio science feature in the U.S., tells listeners what to look for in the night sky.
Podcast website

Listen to StarDate, The Mel Robbins Podcast and many other podcasts from around the world with the radio.net app

Get the free radio.net app

  • Stations and podcasts to bookmark
  • Stream via Wi-Fi or Bluetooth
  • Supports Carplay & Android Auto
  • Many other app features
Social
v7.23.13 | © 2007-2025 radio.de GmbH
Generated: 11/21/2025 - 3:19:12 AM